CIGÜEÑAL
Un cigüeñal es un eje acodado, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela - manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En los motores de automóviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigüeñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.
El cigüeñal forma parte del mecanismo bielamanivela, es decir de la serie de órganos que con su movimiento transforman la energía desarrollada por la combustión en energía mecánica. El cigüeñal recoge y transmite al cambio la potencia desarrollada por cada uno de los cilindros. Por consiguiente, es una de las piezas más importantes del motor.
Equilibrado.
El equilibrado se consigue por medio de contrapesos aplicados, a las manivelas para obtener, cuando sea necesario, el equilibrado estático y el dinámico del cigüeñal en todo su conjunto y, muchas veces, de cada una de las manivelas. Sirve además para reducir el efecto de algunas de las fuerzas debidas a las masas en movimiento alternativo. Los objetivos del equilibrado son esencialmente dos:
- Reducir las vibraciones del motor causadas por las fuerzas y momentos generados por la presión de los gases en los cilindros y por las piezas en movimiento alternativo y giratorio (pistones, bielas, y cigüeñal).
- Reducir las cargas sobre los cojinetes de bancada.
LEVA
Transformación del movimiento: Estos mecanismos van a transformar un movimiento lineal en circular o viceversa, las características de los movimientos pueden ser muy distintas, intermitente, alternativo, continuo…
una leva es un elemento mecánico hecho de algún material (madera, metal, plástico, etc.) que va sujeto a un eje y tiene un contorno con forma especial. De este modo, el giro del eje hace que el perfil o contorno de la leva toque, mueva, empuje o conecte una pieza conocida como seguidor. Existen dos tipos de seguidores, de traslación y de rotación.
La unión de una leva se conoce como unión de punto en caso de un plano o unión de línea en caso del espacio. De ser necesario pueden agregarse dientes a la leva para aumentar el contacto.
El diseño de una leva depende del tipo de movimiento que se desea imprimir en el seguidor. Como ejemplos se tienen el árbol de levas del motor de combustión interna, el programador de lavadoras, etc.
CLASIFICACION
Las levas se clasifican de acuerdo con su forma. Se emplean frecuentemente levas de disco, de plato o radiales.
La siguiente figura representa cuatro levas de disco diferentes con seguidores de distinto tipo, junto con una leva de cuña, una leva cilíndrica, una leva transversal y una leva de yugo. En todos los casos el seguidor esta obligado a mantener el contacto con la leva. Ello se logra con resortes, por el peso propio debido a la gravedad de las piezas o por la acción mecánica.
TIPOS DE LEVAS
a) Leva de disco y seguidor de pie plano en traslación descentrada.
b) Leva de disco y seguidor de pie redondeado oscilante.
c) Leva de disco con seguidor afilado en traslación descentrada.
d) Leva de disco bilobulada con seguidor provisto de rodillo en traslación descentrada.
e) Leva de cuña con seguidor en traslación provisto de rodillo.
f) Leva cilíndrica con seguidor oscilante provisto de rodillo.
g) Leva cilíndrica transversal con seguidor en traslación provisto de rodillo....
MANIVELA BIELA
El mecanismo de biela - manivela es un mecanismo que transforma un movimiento circular en un movimiento de traslación, o viceversa. El ejemplo actual más común se encuentra en el motor de combustión interna de un automóvil, en el cual el movimiento lineal del pistón producido por la explosión de la gasolina se trasmite a la biela y se convierte en movimiento circular en el cigüeñal.
En forma esquemática, este mecanismo se crea con dos barras unidas por una unión de revoluta. El extremo que rota de la barra (la manivela) se encuentra unido a un punto fijo, el centro de giro, y el otro extremo se encuentra unido a la biela. El extremo restante de la biela se encuentra unido a un pistón que se mueve en línea recta.
ELEMENTOS
- Biela: Es un elemento rígido y alargado que permite la unión articulada entre la manivela y el émbolo. Está formada por la cabeza, la caña o cuerpo y el pie. La forma y la sección de la biela pueden ser muy variadas, pero debe poder resistir los esfuerzos de trabajo, por eso es hecha de aceros especiales o aleaciones de aluminio.
- Manivela: Es una palanca con un punto al eje de rotación y la otra en la cabeza de la biela. Cuando el biela se mueve alternativamente, adelante y atrás, se consigue hacer girar la manivela gracias al movimiento general de la biela. Y al revés, cuando gira la manivela, se consigue mover alternativamente adelante y atrás la biela y el émbolo.
Segundo periodo
TECNOLOGIA GRADO NOVENO
MAYO 2011
TRABAJO
1. Realice guía de los temas tratados en este folio y 15 preguntas con respuestas
2. investigue más sobre los temas y prepare exposición para próxima clase
ELECTROMAGNETISMO
El estudio del magnetismo se remonta a la observación de que “piedras” que se encuentras en la naturaleza (esto es, magnetita) atraen al hierro. Es posible establecer que todos aquellos fenómenos magnéticos cuando dos cargas están en movimiento, entre ellas surge una fuerza que se denomina fuerza magnética.
La ciencia de la electricidad nació con la observación, conocida por Tales de Mileto el año 600 a.c. de que de un pedazo de ámbar frotado atrae pedacitos de paja. Cuando dos cargas eléctricas se encuentran en reposo, entre ellas existe una fuerza denominada electrostática.
Hans Christian Oesrted (1777-1851) observó una relación ente ellas, a saber, que la corriente eléctrica de un alambre puede afectar a una aguja magnética de una brújula.
EL EXPERIMENTO DE OERSTED:
En 1982 mientras trabajaba en su laboratorio OERSTED monto un circuito eléctrico y lo coloco cerca de una aguja magnética, al no haber corriente en el circuito (circuito abierto) la aguja se ubicaba en le dirección norte - sur. Las ramas del circuito deben colocarse en forma paralela a la aguja. Quiere decir que se debe orientar en la dirección norte-sur.
Al establecer una corriente en el circuito, OERSTED observo que la aguja magnética se desviaba, tendiendo a orientarse en dirección perpendicular al conductor AB, al interrumpir el paso de la corriente, la aguja volvía a su posición inicial en la dirección Norte-Sur. Estas observaciones realizadas por OERSTED demostraron que una corriente eléctrica podia actuar como si fuese un imán, originando desviaciones en una aguja magnética. Así se observo por primera vez que existe una relación estrecha entre la electricidad y el magnetismo: una corriente eléctrica es capaz de producir efectos magnéticos.
Al darse cuenta de la importancia de su descubrimiento, OERSTED divulgo el resultado de sus observaciones, que inmediatamente atrajo la atención de varios científicos de esa época. Algunos de ellos comenzaron a trabajar en investigaciones relacionadas con dicho fenómeno, entre los cuales se destaca el trabajo de AMPERE.
Aplicaciones del electromagnetismo
· Trenes de levitación magnética. Estos trenes no se mueven en contacto con los rieles, sino que van “flotando” a unos centímetros sobre ellos debido a una fuerza de repulsión electromagnética. Esta fuerza es producida por la corriente eléctrica que circula por unos electroimanes ubicados en la vía de un tren, y es capaz de soportar el peso del tren completo y elevarlo.
· Timbres. Al pulsar el interruptor de un timbre, una corriente eléctrica circula por un electroimán creado por un campo magnético que atrae a un pequeño martillo golpea una campanilla interrumpiendo el circuito, lo que hace que el campo magnético desaparezca y la barra vuelva a su posición. Este proceso se repite rápidamente y se produce el sonido característico del timbre.
· Motor eléctrico. Un motor eléctrico sirve para transformar electricidad en movimiento. Consta de dos partes básicas: un rotor y un estator. El rotor es la parte móvil y esta formado por varias bobinas. El estator es un imán fijo entre cuyos polos se ubica la bobina. Su funcionamiento se basa en que al pasar la corriente por las bobinas, ubicadas entre los polos del imán, se produce un movimiento de giro que se mantiene constante, mediante un conmutador, generándose una corriente alterna.
· Transformador. Es un dispositivo que permite aumentar o disminuir el Voltaje de una corriente alterna. Esta formado por dos bobinas enrolladas en torno a un núcleo o marco de hierro. Por la bobina llamada primario circula la corriente cuyo voltaje se desea transformar, produciendo un campo magnético variable en el núcleo del hierro. Esto induce una corriente alterna en la otra bobina, llamada secundario, desde donde la corriente sale transformada. Si el numero de espiras del primario es menor que el del secundario, el voltaje de la corriente aumenta, mientras que, si es superior, el voltaje disminuye.
AUTOMÓVIL
Automóvil se refiere principalmente a un vehículo autopropulsado por un motor propio y destinado al transporte terrestre de personas o mercancías sin necesidad de carriles. []Un automóvil tiene varias ruedas con neumáticos y capacidad de al menos una plaza para el conductor. Algunas ruedas, normalmente las delanteras, (pueden ser las traseras como en un dumper) pueden cambiar su orientación hacia los lados para permitir giros y tomar curvas, accionadas por el conductor mediante un volante. El automóvil lo inventó Karl Friedrich Benz en la ciudad alemana de Mannheim en 1886
La historia del automóvil empieza con los vehículos autopropulsados por vapor del siglo XVIII. En 1885 se crea el primer vehículo automóvil por motor de combustión interna con gasolina. Se divide en una serie de etapas marcadas por los principales hitos tecnológicos.
Futuro del automóvil
Actualmente se estudian nuevas formas para movilizarse de manera más rápida y eficiente lo que incluye mejores carreteras por las que moverse. La antigua visión futura del automóvil volador está desechada en la actualidad, ya que la energía necesaria para hacerlos sostenerse en el aire sería mucho mayor.
Un futuro posible del automóvil es su sustitución por medios de transporte público, que presentan una mayor eficiencia energética. Esto puede suceder a causa de la escasez de petróleo y su consecuente aumento de precio.
Comentarios
Publicar un comentario